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Abstract. A general practical method for solving a Thue-Mahler equation is given. Using algebraic
number theory and the theory of linear forms in logarithms of algebraic numbers in both the
complex and p-adic case, an explicit upper bound for the solutions is derived. A practical method for
a considerable reduction of this bound is presented, based on computational real and p-adic
diophantine approximation techniques, in which the main tool is the LLL-algorithm. Special
attention is paid to the problem, in general non-trivial, of finding the solutions below the reduced
bound, using an algorithm of Fincke and Pohst for determining lattice points in a given sphere, and
a sieving process. As an illustration of the usefulness of the method, the equation
x3 - 23x2y + Sxy2 + 24y3 - ± 2z’ 3z25z37z4 is completely solved.

1. Introduction

In this paper we develop a practical method for solving the general Thue-
Mahler equation over Z. This is the diophantine equation

where

is a given irreducible binary form in Z[X, Y] of degree n &#x3E; 3, the other

parameters are the distinct rational primes pl, ... , p,, (v &#x3E; 1) and the integer c
(without loss of generality we assume that (c, pi " " ’ puy) = 1), and the unknowns
are (X, Y, z 1, ... , z,) E Z2 x Zv o. Without loss of generality we may assume that

K. Mahler, in [Ma], was the first to prove that such an Equation (1) with
condition (2) has at most finitely many solutions. Twenty four years earlier A.
Thue had proved in [Th] that the equation F(X, Y) = c (i.e. (1) with v = 0, the
so-called Thue equation) has only finitely many solutions. This explains the
name of Equation (1). The first proofs of these results were non-effective, and
only after the work of A. Baker in the 1960’s (the first generalizations to the p-
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adic case, needed for the Thue-Mahler equation, are due to J. Coates), were
effective proofs given. For the history of both equations we refer to Chapters 5
and 7 of T. N. Shorey’s and R. Tijdeman’s book [ST].
The present paper is a natural continuation of our 1989 paper [TW1], in

which we develop a practical method for solving the general Thue equation.
Compared to the Thue equation the study of the Thue-Mahler equation
presents more difficulties, both from the theoretical and the computational point
of view. It took us several years before we were able to develop our method in its
present generality. The first general ideas (cf. [dW2]) were suggested by
combining our ideas from the study of the general Thue equation with our ideas
on p-adic diophantine approximation from a computational viewpoint (see
[dW 1, Chapters 3 (theory), 6, 7 (practice)]). Here we certainly were inspired by
the 1980 paper [ACHP], which was until very recently the only paper in which a
Thue-Mahler equation was solved by a similar method.
As a next step we tried to apply our general ideas to the solution of a specific

Thue-Mahler equation, namely X 3 - 3X y2 _ y3 = :t3Zt17Z219z3, see [TW2]
and, for a brief exposition, [TW3]. In this specific example a very helpful fact is
that the field associated with the cubic binary form is Galois; nevertheless the
whole task proved far from trivial. Thus, in the last few years we have

accumulated a certain experience on the various aspects of the practical solution
of the Thue-Mahler equation. To this experience we ascribe our partially
successful attempts to apply in practice the ideas that are presented in Chapter V
of Sprindzuk’s book [Sp]. The reader who compares Sprindzuk’s approach (and
also that of Shorey and Tijdeman [ST, Chapter 7]) to ours, will notice essential
differences, mainly motivated by our urge to present a practical method, in
which the algebraic number theoretical work should be minimized, both in
quantity and complexity. Finally we felt that we had enough experience to share
it with others, by presenting a practical way of ’how to solve a Thue-Mahler
equation’, which is the aim of the present paper. To convince the reader (and
ourselves as well) that our method really works, we applied it to a specific
example, on which we also report below.
As usual our method consists of three steps:

(1) A very large upper bound for the solutions is derived from the theory of
(real/complex and p-adic) linear forms in logarithms. Here we use the best
theorems available, due to Blass, Glass, Manski, Meronk and Steiner in the
real/complex case, and Yu in the p-adic case. At this point, algebraic number
theory makes its appearance, preparing our way towards the linear forms in
logarithms of algebraic numbers.

(2) The upper bound can be considerably reduced in practice by diophantine
approximation computations, based on applying the LLL-algorithm to the
so-called approximation lattices related to the linear forms, both in the
real/complex and p-adic case.



225

(3) The solutions below the reduced bound can be found by several methods (or
a combination of them): more detailed computations with the approxi-
mation lattices, where the main tool is an algorithm of Fincke and Pohst for
determining lattice points in a given sphere; a sieving process; and enumera-
tion of possibilities. At this point we want to warn the reader not to
underestimate this third step of finding all the solutions below a relatively
small upper bound. It might well be the computational bottleneck of the
entire method, especially when a more ’complicated’ Thue-Mahler equation
is studied (i.e. one with many primes and/or many fundamental units
involved).

To help the reader understand better our method we have divided the paper
into many numbered sections. Each Section N (N :0 13) is followed by a Section
NE", typeset in a different style, in which we apply the general ideas of Section N
to the specific equation we are solving.

1 Ex As an example we will study the Thue-Mahler equation

and solve it completely (a list of all the solutions is given in Section 18E"). Note that fo = 1, c = 1,
v = 4, n = 3. This is a rather ’hazardous’ Thue-Mahler equation, chosen by the mere facts that the
field associated with the cubic form is not Galois, and that there are ’many’ and ’large’ solutions
(there are 72 solutions, when we count only the (x, y) with x &#x3E; 0). Note that by Evertse’s famous
result [Ev, Corollary 2] the best a priori information is that the number of solutions is less than
2 x 10251,

2. The relevant algebraic number field

Let 03BE be a root of F(t, 1) = 0, and put K = Q(03BE). The conjugates of 03BE are denoted
by j"&#x3E; (i = 1,..., n), and are ordered as follows:

with s + 2t = n. Now (1) is equivalent to

Put x = foX, y = Y, 8 = f003BE, so that (1) is equivalent to

Assumption (2) is equivalent to
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Note that K = Q(0), [K : Q] = n, and the minimal polynomial g(t) of 0 is monic,
viz.

thus 0 is an algebraic integer. We need the following information:

2022 a basis of a convenient order (9 of K containing 0 (not necessarily the maximal
order = the ring of integers),

e a system of fundamental units in (9.

Note that we do not need the class number of K. For computing the above data
efficient algorithms are known, cf. e.g. [Bil], [Bi2], [Bul], [Bu2], [Bu3], [Bu4],
[Bu5], [DF], [PZ1], [PZ2], [PZ3], and even computer packages for such
algebraic number theory computations are already in use, such as KANT (cf.
[Sm]).

2E" Note that x = X, Y = 1: () = ç. The defining polynomial g(t) = t3 - 23t2 + 5t + 24 has s = 3
real roots, whence t = 0. The discriminant of g is D. = 1115525 = 52 · 44621 (44621 is prime). The
field K is not Galois, since Dg is not a square; a basis of the ring of integers (!)K is {1, 9, cv} with
0) = (2 + 0 - 0’)15 (apply [DF, Theorem Vil, §17]), so that the discriminant of K is D. = 44621. A
system of fundamental units of (!)K is f 81, 921 with el = 1 + 0 - 603C9, e2 = 3911 + 43970 + 10460).
This system has been computed by the method of Berwick [Be], and was checked by R. J. Stroeker,
who used the KANT package. The three conjugates of 0 in Il are

3. Décomposition of primes

Let p be any rational prime, and let

be the decomposition of g(t) into irreducible polynomials gi(t) E Qp[t]. The
prime ideals in K dividing p are in one-to-one correspondence with

gl(t),..., gm(t) (cf. [BS, Theorem 3, Section 2, Chapter 4]). More precisely, we
have in K the following decomposition of (p):

with 1, ... , p. distinct prime ideals, and el,..., em~N (the ramification indices).
For i = 1, ... , m the residual degree of pi is the positive integer di for which
Npi = p di, and then eidi = deggi(t).
For p = p 1, ... , p, one has to compute the above mentioned decompositions.

Algorithms to do so efficiently are known, cf. [PZ3].
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We have computed

and we have computed

and we have found

, and we have computed

Moreover, for p = 2, 3, 7 we have

4. p-adic valuations

In this section we give a concise exposition of p-adic valuations. By Op we
denote the algebraic closure of Q p’ and by Cp the completion, with respect to the
p-adic absolute value, of Qp. As general references we give the books of Koblitz
[Ko] and Narkiewicz [Nal] (especially Chapters I, IV and V). Let p be any
rational prime, and let x E K. Let p, be a prime ideal dividing p, and let di, ei, gi(t)
be defined as in Section 3. Now, ordp (x) is defined as the exponent (a positive or
negative integer, or 0) of pi in the decomposition of the principal (fractional)
ideal (x). Since factorization into prime ideals does not depend on the choice of
conjugates, this definition of ordp/x) is independent of the choice of conjugates.

Let i~{1,..., m}. Put K,i = Qp(03B8i), where 0; satisfies gi (0j) = 0. There are m
embeddings (one for every i ) defined by

Now, let 03B8(1)i,...,03B8(ni)i~Qp be the conjugates of Oi, where ni = deggi(t). Then
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there are ni embeddings given by

Here, i~{1,...,m},j~{1,..., ni}. Note that, if 03B8(1),...,@ 0(n) denote the roots of
g(t) in 0., then every 03B8(j)i coincides with some 03B8(k). Since n 1 + ... + nm = n, there
are n embeddings given by

If K is considered as embedded in Kp, (by means of 03C4i), then the p-adic order of
x~K is defined by

Thus, m different p-adic orders can be defined in K, and which one we choose in
a particular instance depends on how we view K, i.e. of which field K., we
consider K to be a subfield. Given the p-adic order in K, we can define the p-adic
absolute value in K by

Now Kpi = Qp(03B8i) is the completion of K with respect to |·|p. We also have

Here, as before, ni = deg gi(t) = [Kpi : Qp]. In fact, we can extend the p-adic
absolute value to any finite extension L of Qp by

and, analogously,
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(note that these definitions are independent of the extension L containing x), so
that |x|p = p-ordp(x). Now we are in a position to define the p-adic order and
absolute value of any XE Qp. Indeed, just consider any extension L of Op
containing x, and apply the latter two formulas. Note that for x, y E Qp it is still
valid that ordp(xy) = ordp(x) + ordp(y) and ordp(x + y) a min{ordp(x),
ordp(y)}. Note also that if K is embedded in Kpi then the ordp(x) previously
defined coincides with the p-adic order ordp(03C3ij03BF03C4i(x)) of the p-adic number
03C3ij 03BF Li(X) (for any j~{1,..., ni}).
Of course, in the special case x E 0 p we can write

with c03BC ~ 0 if x ~ 0, and then ordp(x) = li, Ixl, = p-e. We adopt the following
notation for x~Qp:

where we take ci = 0 for all i  li.

Finally we note that, having already defined the p-adic absolute value and p-
adic order of any x~Qp, we can define the p-adic absolute value and p-adic
order of any x~ Cp as follows. We consider any sequence (xj of elements of Qp
converging to x; then we define lxlp = lim Ixnlp, and ordp(x) by means of
lxip = p-ordp(x) 

n- -o

4E" For p = 5 the situation is easy: in Section 3E" we have seen that g(t) has three roots in Q5, which
we denote by 6(1), ()(2), 03B8(3). In this case m = 3, and for every i = 1, 2, 3 we have gi(t) = t - 03B8(i) so that

(in the notation of Section 4) 03B8i = 03B8(i), Kp5i = Q5(03B8(i)) = Qs, 03C4i(03B8) = 03B8(i), and the three embeddings
K  Qs are 03C3i1 with CTi1«() = 0(’) for i = 1, 2, 3. We have the Table

Note that ord5(03C0(j)5i) = 1 if i = j and 0 otherwise.
For p = 2, 3, 7 the situation is somewhat more complicated. According to Section 3Ex, m = 2, and

if we denote by 03B8(1) the root of gi(t) and by 03B8(2), 03B8(3) the roots of g2(t), then 03B81 = 03B8(1)~Qp,
Kpp1 = Qp(01) = Qp, Ti(0) = 03B81 = 03B8(1). Further 03B82 satisfies 92(02) = 0, K P,2 = Up(02) (a quadratic
extension of Qp), 03C42(03B8) = 03B82. Then the three embeddings K 4 Cp are 03C311 03BF 03C41 which maps 0 to 03B8(1),
and 03C32j 03BF z2 which map 0 to 03B8(j+1) for j = 1, 2. We have the following Tables:



230

5. Removal of prime ideals

After the general remarks of Sections 3 and 4 we now return to our Thue-Mahler
equation (3). We assume that (x,y,z1,...,zv)~Z2 Zv0 is a solution of (3)
satisfying (4). The decomposition of (x - y03B8) into prime ideals may contain
(apart from a bounded contribution fromfn - 1 c) any prime ideal dividing one of
the pi. The following lemma shows that in fact for each pi, at most one prime
ideal dividing it may have a nontrivial contribution to (x - yO). Thus the
number of prime ideals to be considered is at most v. Therefore we may call the
next lemma ’The Prime Ideal Removing Lemma’, and it is an ideal prime
removing lemma indeed.

Let p be any prime, and let p;, di, ei, gi(t) have the same meaning as above.
Again we denote by 0)P the roots of gi(t), for i = 1,...,m and

i=1,...,ni=deggi(t). Further, let e = max{e1,..., em}, and let Do be the
discriminant of 0.

LEMMA 1 (The Prime Ideal Removing Lemma).
(i) For every pair i, j~{1,...,m} with i ~ j there is at most one p E {pi,pj}

satisfying
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FIRST COROLLARY OF LEMMA 1

(i) There is at most one pi dividing p with

Here h ~ {1,..., nj} and 1 ~{1,..., nkl are arbitrary.
(ii) If pi satisfies (7) and has di &#x3E; 1 or ei &#x3E; 1 then it satisfies (6).

SECOND COROLLARY OF LEMMA 1. There is at most one pi dividing p
with

THIRD COROLLARY OF LEMMA 1. If pt Do then there is at most one pi
dividing p with

Proof of Lemma 1. (i) It suffices to prove that if

where a is some integral ideal, then

In view of the discussion of Section 4 we have:
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and analogously

Since ordp is well defined on Cp, and x - y03B8(k)i and x - y03B8(l)j are elements of C ,
we obtain

The result now follows if ordp(y) = 0. But if p|y then, by (4), p fx, hence
ordp(x - y03B8) = 0 for any p dividing p, and it follows that vo = 0, which implies
the result.

(ii) Since ni = deg gi (t) = ei dt &#x3E; 1, there are k, 1 E {1, ... , ni} with k ~ 1. We
write

for some integral ideal a, and we obtain

and analogously

As in the proof of (i) we obtain the result.

Proof of first corollary of Lemma 1. Trivial.

Proof of second corollary of Lemma 1. We have

and since 0 is an algebraic integer, we have

for all h, l~{1,..., nl with h ~ l. On the other hand, if j, k~{1,..., ml with j * k,
and 03B8(·)j, 03B8(·)k are arbitrary conjugates of 03B8j, 03B8k respectively, then 03B8(·)j = 03B8(h) and
03B8(·)k = 0(’) for some h, l~{1,...,nl with h ~ l. Then ordp(D03B8)  2 · ordp(03B8(·)j - 03B8(·)k);
hence (8) implies (7), and the 1 st Corollary (ii) can be applied to prove that at
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most one pi dividing p satisfies (8). Also, (8) implies (5) (because it implies (7)), as
well as the negation of (6), so that, by Lemma 1(ii), we must have di = ei = 1.

0

Proof of third corollary of Lemma 1. Obvious from the 2nd Corollary. D

SE" For p = 2, 3, 7 we apply the 3rd Corollary of Lemma 1. It follows that p22, P32, P72 will not
divide (x - y0), whereas V2l, P3l, P7l may divide (x - y03B8) to some power.
For p = 5 we can apply the 2nd Corollary of Lemma 1 with e = 1, ords(De) = 2. It follows that at

most one of p51, p52, p53 can divide (x - y03B8) to the power at least 2, and it may be any of the three.
But now Lemma 1(i) itself gives more information. Note that ei = e2 = e3 = 1, and

Hence, if p51 divides (x - yO), then P 5 2 and p53 don’t. If p52 or p53 divides (x - yO), then p51 doesn’t.
If"52 divides (x - yO) to the power at least 2, then pss divides (x - y03B8) to the power at most 1, and if
p53 divides (x - yO) to the power at least 2, then p52 divides (x - yO) to the power at most 1. Thus
(x - y0) has one of the following five forms:

for nonnegative integers nl, n2, n3, n4.

6. Factorization of the Thue-Mahler equation

Thus Yi is finite, and it may even be empty. In view of the Prime Ideal Removing
Lemma, (3) implies a finite number of ideal equations of the form

Here,

e a is an integral ideal with Na = fn-10c,
2022 (p 1, ... , Pv) ~P1 x... x 9,, where puii stands for the unit ideal if 9i = ~,
2022 the prime ideal factors of b are those that divide one of the pi but are not equal

to one of p1,...,pv,

For convenience we assume (without loss of generality) that none of the Yi is
empty. 
For any i = 1,..., v let hi be a positive integer such that phii is a principal ideal.

The smallest such hi is a divisor of the class number h of K. In practice it will be
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useful to take hi minimal, to reduce the number of cases to be considered in the

sequel, but this is not essential. For i = 1,..., v the nonnegative integers ni, si are
defined by

and we put

Then

and (9) is equivalent to

where

(note that this is a principal ideal indeed), and {03B51,..., sj is a set of fundamental
units in some order (9 of K containing 0. Here, r = s + t - 1, and one usually
takes O to be the maximal order, i.e. the ring of integers OK of K, but again this is
not essential. Note that the finite number of equations (9) leads to a finite
number of equations (11). Each of these cases has to be treated separately in the
sequel. In practice, one has to compute all the possibilities for a (which is

determined up to a unit), and, as remarked before, one has to know the set of
fundamental units in (9, and the nontrivial roots of unity, if any (such roots exist
only if s = 0). One also has to know the hi, and in achieving that, a knowledge of
h is not required, although it might be useful.

6E’ As remarked in Section SE", we have five equations (9). Since we can take all hi equal to 1 (in fact,
we believe that h = 1, but we didn’t check), all the si are 0, and for equation (11) we also have five
possibilities. Note that a = (1), Pp = Ppl and 1rp = 03C0p1 for p = 2, 3, 7, and the 5 cases are:
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7. The S-unit equation

Let p ~{p1,..., pv, ~}, and denote the roots of g(t) in Cp (where C~ = C) by
03B8(1), ... , 03B8(n). Let io, j, k ~ {1, ..., nl be distinct, and apply the three isomorphic
embeddings of K into Cp given by 0 - 03B8(i0), 03B8(j), 03B8(k) to

From the three conjugate equations thus obtained we eliminate x and y, which is

possible just because F(X, Y) was supposed to be irreducible and of degree  3

(cf. Section 2). Then we obtain

Now we apply (11), and thus we find the so-called ’S-unit equation’

where

are constants. We will now study for each p (for the time being, p ~ oo) the p-
adic absolute value of Â for suitably chosen indices io, j, k.

LEMMA 2. If y E K is an algebraic integer with NK/Q(03B3) ~ 0 (mod p), then
03B3(l) E Cp is a p-adic unit for every 1 ~{1,..., n}.

Proof of Lemma 2. This is an easy exercise, that we leave to the reader. 0

Let l~{1,..., v}. We consider the prime p = pl.
COROLLARY OF LEMMA 2

Proof of the corollary. Obvious from Lemma 2. D

We now show how to choose io. We may assume that gl(t) is the irreducible
factor of g(t) over 0 Pl that corresponds to the prime ideal pl~Pl that appears in
(9). Since pl ~Pl, we have deg g1(t) = 1. We denote by 03B8(i0) the root of g 1 (t). In this
way a direct connection between 1 and io is established. The other two indices j, k
appearing in (12) are fixed, but arbitrary. Note that it is always possible, and it is
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advisable, to take j, k as follows:

e If there are at least three gi(t) with deg gi(t) = 1, then (JÚ) and 03B8(k) should be

roots of such linear polynomials. Then j, k can be taken so that ordpl(03B41)  0.
* If there are at most two linear gi(t), then there is a gi(t) with deggi(t)  2, and

0(j) and 03B8(k) should be roots of the same such gi(t). Then

Moreover, if there is a gi(t) with deg gi(t) = 2, then it is advisable to choose 0(i)
and 03B8(k) to be roots of that quadratic polynomial, for reasons to be given later.

LEMMA 3

Proof of Lemma 3. Let 0(j) be a root of g2(t) say, and let p’ be the prime ideal
dividing p, that corresponds to g2(t), with ramification index e’. Then

since (03C0l) = pfl’ and pl ~ p’. Analogously we find ordpl(03C0(k)l) = 0, and (i) follows.
Further, (ii) follows from

since the ramification index el of pi equals 1. D

Note that 03B41 and 03B42 are just constants, hence so are their pl-adic orders. They
must be computed explicitly.

7Ex The number of cases has now grown to twenty: each of the five cases of Section 6Ex has to be
treated for each of the four primes pi = 2, 3, 5, 7. For pl = 2, 3, 7 we always have io = 1, and we
choose j = 2, k = 3. For pi = 5 we take, according to the advice given above for choosing j and k:
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With these choices we have:

8. A bound for N in terms of log H

Put

In this section we obtain an upper bound for N in terms of log H. First we treat a
special case, which turns out to be trivial. Then we give the main result of this
section, based on the theory of p-adic linear forms in logarithms of algebraic
numbers.

LEMMA 4.

Proof of Lemma 4. Applying the Corollary of Lemma 2 and Lemma 3 to both
expressions of 03BB in (12) we compute on the one hand ordpl(03BB) = min{ordpl(03B41),
ordpl (1)} = 0, and on the other hand ordpl(03BB) = ordpl(03B42) + nlhl, hence the
result follows. D

THEOREM 5. There exist positive constants clo(pl), cll(pl), depending on F and
c too, that can be explicitly calculated, such that

Proof of Theorem 5. Obviously we may assume H  1. Let c10(pl)  1,

Cl1(PI) &#x3E; -1 hlordpl(03B42). Then we may assume nl&#x3E;-1 hlordpl(03B42), and Lemma 4
implies ordp,(ô,) = 0. From (12), the Corollary of Lemma 2 and Lemma 3 we
infer

and also that all the ratios appearing in the first expression for 03BB in (12) are p,-
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adic units; hence 03B41 is a pl-adic unit as well. Applying Yu’s theorem (see
Appendix A2) to the first expression for 03BB in (12) we find

for some positive constants c’10, c i 1 depending on pl, which can be explicitly
calculated (cio will be ’large’). We may assume c’10  hl . Now (13) implies the
theorem with

On putting

Theorem 5 implies

8Ex Lemma 4 implies n5 = 0 in cases II and IV. Hence, they can be incorporated in case 1 with
ns = 0. As a result, from now on we need only consider cases I, III and V. The constants c10(pl) and
c11(pl) have to be computed from [Yu2]; see Appendix A2E". We obtained:

9. A bound for H

Theorem 5 was the first important step towards an upper bound for H. In fact, it
contains all the p-adic arguments. We will also need real/complex arguments,
which we will give in this and the next section. Our aim is to bound A from
above by a linear function of H. Put
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For any r x r matrix U = (uij) we define the row-norm N[U] of U as

LEMMA 6. Let I = {i1,..., ir} ~ {1,..., s + tl be any set of r distinct indices,
and consider

Let lobe an index set such that

and let k E lobe an index such that

Then either

Proof of Lemma Then

and it is straightforward to see that

The lemma follows at once.

Now we choose a positive constant

Although it can be chosen arbitrarily, in any specific example of a Thue-Mahler
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equation its choice will affect the size of the upper bound for H to be found.
Later we will indicate what might be an optimal size for c16.
We distinguish three cases. In the first two, k will be the index defined in

Lemma 6.

therefore

Hence, for this case, using (10) and (11), it follows that

where

It follows that

from which it follows that
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with

Note that, in view of Lemma 6, the cases 1 and 2 are exhaustive with respect to

the condition Summarizing, we have

PROPOSITION 7. If

then

where

Now, Theorem 5 and Proposition 7 imply the following

PROPOSITION 8. If

then

where
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Theorem 5 imply

and in both cases the result follows.

(so the regulator of the field K is R = 92.902663 ... ). Clearly, 10 = {2, 3}, and

with N[U-1I0] = 0.17204321..., c15 &#x3E; 5.812. Further we have

For the time being we do not specify C16. Thus

10. A bound for H, continued

In this section we deal with the remaining case.

Case 3. min |03B2(i)|  e-c16A. We treat the S-unit equation in a way which is

essentially the same as that we used in [TW1] for the unit equation resulting
from a Thue equation. Put
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(note that we have no prior knowledge of io, which depends on the solution
(x, y)), and

First we treat the case s = 0 (called the ’totally complex case’).

PROPOSITION 9.

Proof of Proposition 9. If H = A then H  c12 by (19), since t &#x3E; 0 and either

y = 0, whence 1 P(io)1 = |x| = 1, A = 0, or 03B2(i0) ~ R, whence IP(io)1  ilm 03B8(i0)|. If

H ~ A then H = N &#x3E; A, and (14) implies H  c13c14 + c13 log H. D

Next we assume s &#x3E; 0. We distinguish between the case s = 1, 2 (called ’the
complex case’), and s  3 (called ’the real case’). The characterizations ’complex’
and ’real’ refer to the kind of logarithms that we will use below.
From now on we will assume A  c12, so that as in the proof of Proposition 9,

(19) implies i0 ~ {1,..., s}. We choose j, k~{1,..., nl such that io ~j~k~i0.
Moreover, in the real case we choose j, k arbitrarily from {1,..., sl, so that all
three of 03B8(i0), 03B8(j), 0(k) are in R, while in the complex case we choose j arbitrarily
from {s + 1,..., s + tl, and then k = j + t, so that 03B8(k) = 03B8(j). This choice of j and
k is not absolutely essential, but turns out to be convenient.
From

it follows that

Here, the minimum is taken over all i, l~{1,..., s} in the real case, and over all
i~{1,....s}, l~{s + 1,..., s + t} in the complex case. Using this and (19) we
find from (12)
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where

Here the minimum is taken as above, and the maximum is taken over all i1, i2,
i3~{1,...,s} in the real case, and over all i1~{1,...,s}, i2~{s + 1,...,s + til
i3 = i2 + t in the complex case.
Note that if H = N, then (14) implies

and H is already bounded. So now assume H = A &#x3E; N. Further we assume that

where

In the real case, put

This is well defined by (22), since then (20) implies |03BB|  1 2, so 1 + 03BB &#x3E; 0. Note

that 039B0 ~ 0. We find le’o - 11 = IÀI  1 2, hence

where Ao can be written as

On the other hand, by the theory of linear forms in logarithms of algebraic
numbers (cf. [Wa], (BGMMS]), we can find a lower bound for JAOI of the
following form:
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where the constants C7, c8 can be explicitly calculated (see Appendix A3). Thus
(22), (23) and (24) combine to

We now put

Thus in the real case, in both the cases H = N and H = A, we conclude in view
of (21) and (25) that

In the complex case, put

Here, Log(z) stands for the principal value of the complex logarithm of z, thus
- 03C0  Im Log(z)  n. Since we have 0(’o) e R and 03B8(k) = 03B8(j), we have

and hence |039B0|  1t. Again we note that 039B0 ~ 0. Now, again assuming (22),
|03BB|  1 2 implies |sin 1 2039B0| = 1 2|ei039Bo - 11 = 1 2|03BB|  1 4, hence

Thus

and Ao may be written as
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For z~C we have -n  Arg(z)  n, and since Arg(ziz2) = Arg(zl) + Arg(z2)
holds only modulo 2n, one more unknown integer ao has entered the scene. By
elementary estimations we see that 203C0|a0|  |039B0| + yN7r + rAn, hence by
|039B0|  1 2 and a0~Z we find

under the assumption H  1.
Since JAOI = liaol and iAo is a linear form in logarithms of algebraic numbers

(note that 2ni = 2 Log( -1)), we get, by analogy with (24),

with c’ = Cg + log1 2(1 + v + r). We conclude, as in the real case, but now from
(22) and (27), that

where

10Ex Since t = 0 we have c12 = 1. We are, of course, in the real case. Now the value of io can be any
of 1, 2, 3, so we have to perform the computations for three cases, namely (io, j, k) = (1, 2, 3), (2, 3,1),
(3, 1, 2). Then
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11. The main theorem

We are now in a position to state and prove the main result of this paper. Put

THEOREM 10

Proof of Theorem 10. In each of the cases we have an inequality of the shape

for fully explicit constants c’, c" with c" &#x3E; e2. Then apply Lemma 2.2 of [PW].
D

In practice, the constants coming from the estimates for linear forms in

logarithms of algebraic numbers, and all constants depending on them, are very
large compared to the others. These large constants are c’10, c10(pl), c13, c 3, c19,
c2o, cio all of which depend on the p-adic estimate for linear forms [Yu2], C7 that
comes from the real/complex estimate [BGMMS], and C23, C’23, c24, c2s, c’25, C26
which depend on both estimates. Note that Creai and ccomplex depend on the p-
adic and real estimates, whereas Ctotally complex depends on the p-adic estimate
only. Further note that the final bounds Creal, ccomplex are essentially of the size of
max{c7, c13}, and Ctotallycomplex is of the size of el 3.
The choice of C16 is free, so it can be taken such that the final bound of

Theorem 10 becomes optimal. Generally speaking, an optimal C16 will be of the
size of c7/c13 if c13 » c7, and of the size of c15/(n - 1) if c13 « c7 or if c13 and C7
are of the same size. Here, c13 comes from the p-adic estimate, and c7 from the
real/complex estimate.

If, in the real or complex case, c13 « C 7, then we can find a better upper bound
for N, namely one of the size of c13. Indeed, with

we have the following corollary.
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COROLLARY OF THEOREM 10. In the real and complex cases, N  CN-
Proof of the Corollary. Obvious from Theorem 10 and (14). Il

11Ex We find

We found that c16 = 10-12 is more or less optimal (it is indeed of the size of c7/c13). Then

In this case the corollary gives no essential improvement, since c13 » C7-

12. Preliminaries for the réduction process

In the following sections we show how the bound for H, given by Theorem 10,
can be considerably reduced. To do so we use methods from Computational
Diophantine Approximation Theory.

First, we need some results from the theory of p-adic numbers. Recall that for
any z E Cp with ordp(z - 1) &#x3E; 0 the p-adic logarithm of z is defined by the
convergent p-adic power series

Moreover, if ordp(z - 1) &#x3E; 11(p - 1), then all the usual properties of the

logarithmic function are valid. In view of the following lemma, we can extend the
definition of the p-adic logarithm of z to all p-adic units of Cp.
LEMMA 11. If z E Cp is a p-adic unit, then a positive integer 0 can be explicitly
found such that

Proof of Lemma 11. If z is algebraic over 0., our claim follows from Fermat’s
Little Theorem for algebraic number fields, cf. [BS, Chapter 3, Section 7,
Problem 6]. Then the general case follows since every z~Cp is the limit of a
sequence of elements of Cp that are algebraic over Qp. ~

For z as in Lemma 11 we define
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Although 0 is not uniquely defined, the above definition is independent of ~, as
can be easily established.

LEMMA 12.

then

Proof of Lemma 12. This lemma is an easy consequence of the relation

ordp(z-1)=ordplogpz, which is valid for z~Cp with ordp(z-1) &#x3E; 1j(P-1)
(see [Yu 1, Section 1.1]). D

Now, let p = p, ~{p1,..., pv} and let the factorization of p into prime ideals of
K be as in Section 3. If among the polynomials g1(t),..., gm(t) E Qp[t] there are
at least three of the first degree, then, by the choice of io, j, k (cf. just before
Lemma 3), all the p-adic numbers appearing in (12) are in Op itself. If however we
are forced to use a conjugate for which deg gi(t)  2, then, as we remarked just
before Lemma 3, we take indices io, j, k in such a way that 0(’o) E Op and 03B8(j), o(k)
are roots of the same gi(t) with deggi(t)  2. In the latter case we consider K
embedded in Kp, (where pi corresponds to gi(t); see Section 3), and the p-adic
order and absolute value are defined in accordance with this embedding (see
Section 4; for simplicity in our notation we do not distinguish between x ~ K and
the image of x under the embedding K  Kpi). Now, all the numbers appearing
in (12) belong to a finite extension of Op.

In either case, all the numbers - are p-adic units by the

Corollary of Lemma 2 and Lemma 3, and ordp(03B41)  0. Moreover, we may
suppose that ô , is a p-adic unit as well. Indeed, if ordp(£51) &#x3E; 0, then by Lemma 4
ni is ’very small’, which means that for p = pi there is no need for a reduction
process such as described below. In view of this, the following linear form in p,-
adic logarithms is well defined for 1 = 1, ... , v (cf. (12)):

(03B41 has been defined immediately after (12)). Further, in view of Section 10, we
will also deal with the following linear forms: in the real case with
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and in the complex case with

In dealing with A, for 1 = 1,..., v, all three indices io, j, k are fixed, as noted
immediately before Lemma 3. However, in case of Ao, we have no prior
knowledge of io, which is defined by (19), and thus depends on the presupposed
solution (x, y). Therefore in this case we must consider all possible values for io,
and for each one of them fix j, k, according to the rules given after Proposition 9.
For convenience, let us write

for 1 = 1,..., v, 0, where the definitions of 03C1l, Âu, tili are obvious. Note that in the
totally complex case we have only 1 = 1, ... , v. In fact, in the totally complex
case any upper bound for N immediately gives rise to a good upper bound for A,
by Propositions 7 and 9, namely A  max{c18 + c17N,N,c12} (note that c17
and C18 are ’small’ numbers).
Lemma 12 guarantees that when ni is large enough, an important property of

03BB is carried over to 039Bl, namely that its pl-adic order can be expressed in terms of
nl. Put

LEMMA 13. If

then

12Ex In this section we give approximations of the p-adic values for p = 2, 3, 5, 7, 00 of the numbers
appearing in the linear forms AI (1 = 1, 2, 3, 4, 0). When applying the reduction process, we will of
course need much higher precision. We give first the p-adic field Kp in which K is considered
embedded (cf. the lines following the proof of Lemma 12), the choice of indices io, j, k, and for 1 = 1, 2,
3, 4 the value of vl (see the Table in Section 7E"). The above information is given for each p separately.
Note that hl = h2 = h3 = h4 = 1.
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pl = 2: K 4 K P22 = (Q2((), VI = 0, 0(l) = 0.0001000110..., ()(2), 03B8(3) roots of

t2 + 0.1000111010... t + 0.1011000010.... We put 03B8(2) =0, so that 03B8(3) = -03B8- 0.1000111010....
Then with (i0,j, k) = (1, 2, 3) we have

p2 = 3: K 4 Kp32 = Q3(03B8), V2 = 0, 03B8(1) = 0.0210020022..., ()(2), 03B8(3) roots of

t2 + 0.1022210022 ··· t + 0.2021111120.... We put 03B8(2) = 03B8, so that ()(3) = - () - 0.1022210022....
Then with (io, j, k) = (1, 2, 3) we have
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p4 = 7: K  Kp72 = Q7(03B8), V4 = 0, 03B8(1) = 0.1544035230..., 03B8(2), 03B8(3) roots of

t2 + 0.6144035230 ... t + 0.4421630235.... We put 0(2) = 03B8, so that 0(3) = -0 - 0.6144035230....
Then with (io, j, k) = (1, 2, 3) we have

in Case 1

in Case V

po = oo: K 4 R, (J(1) = -0.9028831934..., 03B8(2) = 1.1692597799..., 03B8(3) = 22.7336234134.... We
have with (io, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2):



254



255

13. The reduction strategy

Let Ko be the upper bound for H that is given by Theorem 10, and let No be the
upper bound for N that is given by Theorem 10 or its corollary. Our reduction
strategy is the following. For every i = 1,..., v we apply to the linear form Ai the
so-called p-adic reduction step (with p = pi; see Sections 14 and 15) in order to
obtain an upper bound for ni, which is very small in comparison with the initial
upper bound No for nl; in fact it can be expected to be of the size of

(v + 1.) log Ko . Thus the maximum of these reduced upper bounds for n1,..., nlogpi
gives us a new upper bound N1 for N, which is considerably smaller than No.
Using this we can in turn find a new upper bound A 1 for A, which also is of the

size of (v + r logK0 logpi. Indeed, we have the following cases:

In all cases but Case 2.2.2 we immediately have for A an upper bound of the
desired size (note that Ct7, c18, C22 are small compared to Ko and No). In Case
2.2.2 we have

The first inequality implies, in view of Proposition 7, that we are in Case 3
(Section 10). Moreover, the third inequality, Proposition 9 and the definition of
c22 (see after (22)) show that we cannot have s = 0, therefore we are in the real or
complex case. Now the second and third inequality, in combination with (23) in
the real case and (27) in the complex case, imply that

where

This inequality plays an important role in the so called real reduction step,
which we apply to Ao in Section 16. In that step use is made of both A  Ko and
N  NI.
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The whole reduction process can be repeated with Ni in place of No and
K 1 = max{A1,N1} in place of Ko. Thus we will find in the second p-adic
reduction step a bound N2  N1 for N, that can be used in the second real
reduction step to find a bound A2  A, for A. As long as a good reduction is
achieved this way, we can go further with a third, fourth, etc. reduction step (see
Section 17).

14. Preliminaries for the p-adic réduction step

In this section we give some preliminary remarks for the p-adic reduction step,
that will be treated in the next section. For every i~{1,...,v} we consider the
linear form Ai. We have (cf. Lemma 13)

In general, 03C1i, 03BBil (l = 1,..., v), JJil (1 = 1,..., r) and Ai belong to some finite
extension Qpi(~) of Qpi. For convenience in our notation we put

Let s = [Opi(4)): OpJ, and let G(t)~Qpi[t] be the minimal polynomial of 0
over Opi. Then for 1 = 0, 1,..., v + r we can write

and consequently

Now we consider the s pt-adic conjugates of (30) and note that ordpi(039B(l)i) does
not depend on 1 (see Section 4). We have
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Hence there are ylm with ordpi(03B3lm)  0 such that

It follows that

ordpi(039Bil)  ordpi(Ai) - ui,

where

Hence, if ordpi(039Bi) is large, then so are ordpi (Aik) for all k = 0, 1,..., s - 1. Now
fix an arbitrary 1 E {0, ... , s - 11 and let us proceed with Ail’ which has the nice
property of being in °Pi itself, instead of in the extension Qpi(~) (we owe this
remark to J.-H. Evertse). Define Çi E {03B11l, ..., 03B1v+r,l} by

(if more than one choice is possible, any one will do; it will be convenient in the
sequel to take j; as one of the ,u’s). Note that ordpi(03B10l)  ordpi(03BEi) is true when
ordpi(039Bil)  ordpi(çi). Put

and note that 039B’i is a linear form with pi-adic integral coefficients (in Qpi), one of
which is 1, involving the same unknown integers as Ai. Thus we can write

where (bi,..., bv+r) is a permutation of (nl, ... , nv, al, ... , ar), 03B20 = -03B10l/03BEi, and
each of Pl,...,Pv+r-1EZpi is equal to a number of the form -03B1kl/03BEi for the
proper index k. It is convenient to choose the permutation as follows: if Çi = J1ik,
then take (b1,..., bv+r) = (n1,..., nv, a1,..., ak- 1, ak+1,..., a,, ak), and if 03BEi = Â.ik
then take (b1,..., bv+r) = (n1,..., nk -1, nk+1,.., n," a1,..., ar, nk). In the former
case let v’ = v, in the latter case let v’ = v - 1. Note that in view of (31) we have

for i = 1,..., v, with 1; = vi - ui - ordpi(03BEi).
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To conclude this section we like to point out and discuss two special cases. At
the beginning of Section 6 we have assumed that.9j is nonempty, since otherwise
the exponent Zi in (1) would be necessarily ’small’. This is equivalent to the fact
that at least one of the polynomials gi(t)~Qpi[t] (see Section 3) is of the first
degree.
The first special case is when at least three of the polynomials gi(t) have degree

1. Then we have chosen io, j, k in such a way that all the numbers that are
involved in Ai are in Opi itself (cf. Section 7). For the above discussion this
implies s = 1, and thus Ai = A,O. Thus in this case we don’t need to work in a
nontrivial extension Qpi(~) of Qpi.
The second special case is when at most two of the polynomials gi(t) are of

degree 1, but there is one of degree 2. Then we choose indices j, k such that 0(i),
03B8(k) are roots of that quadratic polynomial over Qpi (cf. Section 7). In such a case,
Qpi(~) = Qpi(03B8(j)) = Qpi(03B8(k)).

In this second special case, for any 03B1, 03B2~Qpi(~) we have

This follows from the fact that the nontrivial automorphism of Qpi(~), which
interchanges j and k, multiplies the logarithms by -1. So their quotient is fixed
by this automorphism, and this implies (33).

Because of property (33) we do not have to work with one of 039Bi0, Ai,
(remember that s = 2), but we can work with Ai itself. Namely, now choose
03BEi~{03BBi1,...,03BBiv, 03BCi1,...,03BCir} with minimal pi-adic order, and define

039B’i = (1/03BEi)039Bi. In view of (33) and the definitions of pi, the À’s and M’s (which
indeed are pi-adic logarithms of the quotient of a quadratic number over Qpi and
its conjugate), the coefficients of 039B’i are in Zpi, and we can work with this 039B’i as in
the general case.
Note that if n = 3 we necessarily have one of the two special cases. In both

special cases we can replace (32) by
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and for i = 2, 3, 4, so pi = 3, 5, 7, we have

Note that for i = 1, 2, 4 we are in the second special case, and for i = 3 we are in the first special case.
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15. The p-adic réduction step

In this section i~{1,...,v} is fixed. Let Wl,..., Wv+r be positive integers, called
weights. Later in this section we will fix them. These weights are used to obtain
an optimal balance between the various upper bounds for the different variables.
We choose a positive integer m such that p7 03A0v+rj=1 Wj is of the size of Kv+r, 0 but
large enough (this ’large enough’ will be explained after Proposition 15 below).
For any x~Zpi we denote by x(m) the unique rational integer in the interval
[o, pm - 1] such that ordpi(x - x(m))  m. We consider the lattice rm generated
by the column-vectors of the matrix

Put

and

LEMMA 14.
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this point is a lattice point if and only if 03BB~Z, which is equivalent to

In view of ordpi (fi(j) - 03B2j)  m for j = 0, ... , v + r this is equivalent to

i.e. ordpi(039B’i)  m, which, by (32) (or (34) as the case may be) proves the lemma.
~

Now put

By the LLL-algorithm (see [LLL, Fig. 1], and [dW1, Fig. 1] for an ’integral
version’ of it), we can compute a so-called reduced basis c1,...,cv+r for rm .
Roughly speaking, this is an ’almost orthogonal’ basis. We can also view it as a
basis for R" ", and, in case that y ~ 0, we can express

For the actual computation of the sj, see [dW1, Section 3.8], It can be proved
that

where jo = max{j~{1,...,v + rllsj 0 Z}, and Il II denotes the distance to the
nearest integer. Note that the above set of indices j is not empty when y ~ 0.
Indeed, if it were, then sj c- Z for every j = 1,..., v + r, hence y e F. and rational
integers zl, ... , Zy+r would exist such that

But then z 1 = ··· = zy+r-1 = 0 and -03B2(m)0 = zv+rpmi, and since by definition
Pbm) E [0, pmi - 1], we would conclude Pbm) = 0, which contradicts y ~ 0. Thus the
lower bound for l(0393m, y) given in (35) is always positive.
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Now we fix the weights for the remainder of this section (but in later sections
we might wish to make different choices for these weights):

where W is a convenient positive integer close to Ko/N° (e.g. with Ko = 1050
and No = 3 x 104° it is sufficient to take W = 3 x 109). For the definition of v’,
see just before (32). Put

We have the following result.

Proof of Proposition 1 S. Suppose ni  (llhi)(m - li). Then, by Lemma 14,

Therefore

By the definitions of b 1, ... , bv+r and Wl, ... , Wv+r for the two cases v’ = v,
v - 1, and by the definitions of No and Ko, we obtain

which contradicts the hypothesis. D

Clearly one can prove a similar proposition when the weights are chosen
differently. In practice one can expect that the hypothesis of Proposition 15 is
highly probable if m is taken to be of the indicated size, and large enough.
Indeed, the volume of the parallelepiped spanned by cl, ... , Cy+r is equal to
det Am = pmi03A0v+rj=1 W,. On the other hand, since c1,..., cv+r constitute an almost
orthogonal basis, the above parallelepiped has a volume of the size of

|c1|·····|cv+r|, which can be expected to be of the size of |c1|v+r. Thus |c1|v+r is of
the size of det Am, which, by the choice of m, is of the size of Kô+ r. From this we
see that Icll is of the size of Ko. By (35) we see that also l(0393m, y) is of that size,
except in the case that ~sjo~ is extremely small. This situation is unlikely to
happen, but if it does, then one can apply [dWl, Lemma 3.6] in place of [dWl,
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Lemma 3.5], which hopefully will give a better lower bound for l(rm, y) that is of
the size of Ko.

In practice, we take m such that pmi03A0v+rj=1 Wj be somewhat larger than Kv+r0,
and if with the chosen value for m the hypothesis of Proposition 15 is not

fulfilled, then we should take m somewhat larger than the previous one, and
recompute the reduced basis for the new lattice rm . Note that in such a case we
can take advantage of the computations already done with the not large enough
m, as follows. Suppose that we have computed, using the LLL-algorithm, the
matrices Bm, um for a certain m such that PÃm = Amum, where the columns of Bm
are a reduced basis for rm, and suppose that we want a reduced basis for i’m,
with m’ &#x3E; m. Then we should use as input for the second application of
the LLL-algorithm, rather than Am’. This will save a lot of computation time.
Note that the upper bound (1/hiKm - h) for ni is of the size of

(v + r)log Ko/log pi, as required. Thus, if we repeat the above reduction process
for every i = 1,..., v, then we get an upper bound N1 for N, which is of the size
of log Ko. This usually is considerably smaller than No.

1SEs Based on Ko = No = 9.844 x 1049 we took Wi = ... = W6 = 1. We took m as in the following
Table, and computed the 03B2j~Zpi that constitute most of the input for the LLL-algorithm, to the
desired precision. In order to be able to do this we had to compute many p-adic algebraic numbers
and their logarithms to a high precision. These computations are straightforward but laborious (we
used Hensel’s Lemma = the p-adic Newton method, the power series expansion for the p-adic
logarithm, and a multiple-precision package for p-adic computations written by ourselves). Then we
applied the integral version [dW1, Fig.1] of the LLL-algorithm to each of the 12 lattices, and
obtained data as given in the following Table. Here, in all cases jo = 6.

In all cases the hypothesis of Proposition 15, being l(0393m,y)  J6Ko = 2.41127··· x 105°, is amply
fulfilled (in fact, we could have chosen somewhat smaller m’s). Hence Proposition 15, with li = - 2,
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yields

and it follows that N 1 = 1153 is the new upper bound for N, replacing No = 9.844 x 1049. Note that
N1 is indeed of the size of 6 log Ko/log 2 = 996.4....

16. The real réduction step

As we have noted in Section 13, this step is not made in the totally complex case.
Thus, we suppose that we are in the real or complex case, hence Ao is defined (see
also near the end of section 12). In Section 13 we have also noted that the real
reduction step is essentially needed in practice only when

from which it follows (see (29)) that

Thus in this section we suppose that all the above inequalities hold. Moreover,
we are free to choose c16 different from earlier choices (such as in Section 11), as
long as 0c16c15/(n-1), and the constants depending on it (c17, c 18, c 2 2)
are changed accordingly.

Let i0~{1, ... , sl be fixed. In the real case, we again choose positive integers
W1,... , W,,,-, as weights (note that now W,,, is not defined). Let C be a

positive integer such that C 03A0v+r-1j=1 Wj is of the size of Kv+r0, and C must be large
enough (C is more or less the analogue of m of Section 15). Put

where [·] denotes (e.g.) rounding off towards zero, i.e.

We consider the lattice r generated by the column vectors of the matrix
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Its determinant is approximately C,uo,r 03A0v+r-1j+1 Wj, which is of the size of KÕ+r in
view of the choice of C. By the LLL-algorithm we compute a reduced basis

Ci,... Cy+r of 0393. We put

and as in Section 15 (but now with r in place of rm) we define l(r, y). Note that
(35) still holds with r replaced by rm . As explained in the remark following
Proposition 15, it is reasonable to expect that l(r, y) is of the size of Ko. If it is
too small to fulfill the hypothesis of Proposition 16, we should try again with a
somewhat larger value for C.
Now we fix the weights for the remainder of this section (but in later sections

we might wish to make different choices for these weights):

where W is a convenient positive integer close to K0/N1. Thus C is of the size of
N03BD1Kr0. Let a = 0 if p o = 0, and E = 1 if 03C10 ~ 0. Put

Now we have the following result, which is the real analogue of Proposition 15.

PROPOSITION 16.

Proof of Proposition 16. Consider the lattice point

where
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Then

Hence, also in view of (36),

Since x~0393, we have, by the definition of l(0393, y), and in view of (37),

from which the claimed upper bound for H = A immediately follows. D

Clearly one can prove a similar result for different choices of the weights. The
reduction process described above must be performed for all io = 1,..., s. The
so obtained new upper bound for A is essentially of the size of r log Ko, but holds
only under the assumptions mentioned in the beginning of this section. Thus in
the general situation we obtain the following upper bound A, for A, which will
be considerably smaller than Ko:

A  A1 = max{upper bound from Proposition 16, cls + c17N1, c22}.

From this expression it is easy to choose an optimal value for the parameter c16.
As a consequence of the reduced bounds for A and N we have a new upper

bound K 1 for H, improving on Ko, namely

which is expected to be of essentially the size of log Ko.
In the complex case we work analogously. The only difference in this case is

that, in view of the appearance of the variable ao (see Section 10 after (27)), we
must work in a lattice of dimension v + r + 1, and Ko must be replaced by
1 2(1 + v + r)Ko. Note that here one needs to approximate n = 3.14159 ... to
sufficiently high precision.

16 E x Based on Ko = 9.844 x 1049 and N1 = 1153 we took Wi = ... = W4 = 9 x 1046, W5 = 1,
C = 10132. We computed the input for the LLL-algorithm to the desired precision. In order to be
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able to do this we had to compute many real algebraic numbers and their logarithms to a high
precision. These computations are straightforward but laborious (we used the real Newton method,
the power series expansion for log(1 + x), and a multiple-precision package for real computations
written by ourselves). Then we applied the integral version [dW1, Fig. 1] of the LLL-algorithm to
each of the 9 lattices, and obtained data as given in the following Table. Here, in all cases jo = 6.

and this gives ci6 = 0.0387336..., and thus H  4918.928.... Hence the results from this and the

preceding section yield H  K 1 = 4918.

17. Further reduction and the Fincke and Pohst method

As announced in Section 13, we can repeat the reduction process described in
Sections 15 and 16, to reduce the upper bounds for N and A even further. It is
often useful in the second and further reduction steps to be more careful in the
estimations. Let us for simplicity assume that v’ = v, since the case v’ = v - 1
can be dealt with analogously. Then (b 1, ... , bv+r) = (n1,..., n,,, a1,..., ak-1,
ak+1,...,ar, ax).
Assume that from the previous p-adic and real reduction steps, being the l th in

succession, we have upper bounds Nl1,...,Nlv, A for n1,...,nv, A respectively.
Then NI = maxjNlj is an upper bound for N, and K, = max (Ni, All is an upper
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bound for H. To obtain bounds Nl+1,1,...,Nl+1,v we perform a p-adic
reduction step for each p = pl, ... , pv as follows.
We choose weights as follows: for j = 1,..., v let W be (e.g.) the nearest integer

&#x3E; 0 to Al/Nlj, and let Wv+1 = ··· = Wv+r = 1 (here the hidden assumption is
that AI &#x3E; Nlj; if that is not the case then Wv+1,..., Wv+r should be adjusted such
that a good balance is obtained). Let the lattice rm and the vector y be defined as
in Section 15, and now put

Then the statement of Proposition 15 is obviously true. The p-adic reduction
step as described in Section 15, applied for p = pl, ... , p," now gives new upper
bounds Nl+1,1,...,Nl+1,v for n1,..., n,, . With small computational effort one
can find for each pi, by trying in a certain range, the smallest m such that the
hypothesis of Proposition 15 is fulfilled. This gives the optimal upper bound for
ni.

Subsequently we perform a real reduction step. Choose the weights W for
j = 1,..., v to be the nearest integer &#x3E; 0 to Al/Nl+1,j, and Wv+1 = ...

= Wv+r-1 = 1. Then Proposition 16 with r, B and y as in Section 16, and with

is obviously true. Application of the real reduction step as described in Section
16 now gives a new upper bound Al+1 for A. Again, an optimal C can be found
by trial and error.

In each reduction step the final upper bound Kl+1 for H follows as indicated
at the end of Section 16. Here, C16 can be chosen differently at each reduction
step. The whole procedure can be repeated until no more improvement is

accomplished.
It is possible to considerably reduce the bounds thus obtained even further by

taking a much more detailed look at the approximation lattices rm and r. A
useful tool here is the algorithm of Fincke and Pohst [FP] for determining the
lattice points in a given lattice within a certain distance from the origin. Since
this much more refined reduction technique might use a large amount of
computation time (a large number of lattice points might be found as candidates
for solutions), it is advisable to use it only after the cruder but faster reduction
steps as described above have been pursued until no further improvement is
apparent.
For the p-adic reduction step the technique works as follows (again assuming

v’ = v). For the weights W for j = 1,..., v we now take (e.g.) the integer nearest
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to 2Al/Nlj, and further Wv+1 = ... = Wv+r = 1. Put

Let se IRv+r be defined by y’ = Bs, where .4 is the matrix with the reduced basis
c1,...,cv+r as columns. Choose t e Z"’ such that |ti - si| = 1 for every
i = 1, ... , v + r and jE3t - y’l is minimal. Then most likely et is the lattice point
nearest to y’. With À as in Section 15 and the conventions and notations as
adopted just before (32), we have

(where # means: ak omitted), which is a lattice point, since À E Z (cf. the first lines
of the proof of Lemma 14). By 0  ni  Ni we have

Thus, upper bound for jul is a constant, so the algorithm of Fincke and Pohst
[FP] can be applied to find all the points u that satisfy this relation. For each u
the corresponding nl, ... , n," a1,...,ar can be easily found, and this candidate
solution should be tested further (see below). After all the candidates have been
tested, we can conclude that apart from a few explicitly known ones, the
solutions satisfy ni(1/hi)(m-li), and we have found an improvement of the
upper bound for ni .
Note that in the above process, if we have performed the p-adic reduction step

for some of the pi, we can, instead of the old bound Nli, use the corresponding
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improved bound Nl+1,i for ni in the subsequent applications of the process for
the other pi’s.

In the real reduction step we may work as follows. Again let W for j = 1,..., v
be the nearest integer &#x3E; 0 to 2Al/Nl+1,j, and Wv+1 = ··· = Wv+r-1 = 1, with all
other notations below as in Section 16, if not explicitly redefined. Consider the
lattice r for some C, and the vector

Let s, t, E0 be as above. Consider the lattice point

Put u = z - et, which is a lattice point with

Let R be as before, and now let

Let D &#x3E; .JR2 + S be some convenient number. We distinguish two cases.
e If Iz - y’l  D then all lattice points u satisfying the inequality

lui  D + jet - y’1 can be computed by the algorithm of Fincke and Pohst,
and tested.

e Otherwise we can apply Proposition 16, with 1(I°°, y) replaced by D and with S
as given above, and thus obtain a new upper bound for A.

In this way we will find a new upper bound for H that holds for all solutions
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apart from a few explicitly known ones. We may repeat the whole procedure,
decreasing m (in the p-adic step) and C (in the real step) little by little (not too
much at a time, in order to limit the number of lattice points to be tested), and
hopefully we will reach a final upper bound for N and A that is small enough to
admit e.g. enumeration techniques.
To conclude this section we describe how we can test a candidate solution in a

way that rules out non-solutions at an early stage. We start by checking (34) for
i = 1,..., v, and in case of failure we take

for i = 1,..., v (compare Lemma 13). This test is easy in practice: the Ai can be
easily computed up to the desired precision because all its ingredients have
already been computed to a very high precision.

It is not guaranteed that all candidate solutions that pass this test are

solutions. Therefore one subsequently has to perform another test, such as
checking (12), or the vanishing of the coefficients of 03B82,...,03B8n-1 in the right hand
side of (11). Such a test can be performed up to a certain precision in p-adic and
real form before it is applied with exact computations. Thus a series of tests is
available, of increasing computational complexity, but hopefully needed for a
rapidly decreasing number of candidates only.

17E" For the second p-adic reduction step we took Wi = 4, W2 = 7, W3 = 10, W4 = 13. We
increased m with steps of 1, in the ranges indicated below, until l(rm, y) &#x3E; Q = 11824.879..., since
Q=4211532+726722+1024812 + 1323842 + 2·49182. We used the reduced basis of rm-t 1 to

precompute the input for the reduction of the basis of 0393m, as indicated near the end of Section 15. We
found:
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The conclusion is:

hence N2 = 105.
For the second real reduction step we took Wi = 47, W2 = 82, W3 = 114, W4 = 141. We started

with C = 1021, increasing it by a factor 10 until we could find an upper bound for A for some optimal

c16, applying either H or Proposition 16. We thus obtained:

The conclusion is: H  463.
For the third p-adic reduction step we took Wi = 4, W2 = 7, W3 = 10, W4 = 13. We increased m

until i

found:
We
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The conclusion is:

hence N 3 = 79.
For the third real reduction step we took Wl = 6, W2 = 9, W3 = 13, W4 = 15. We started

C = 1018, increasing it by a factor 10 until we could find an upper bound for A for some optimal

applying either or Proposition 16. We thus obtained:

The conclusion is: H  352.
In the subsequent reduction steps we applied the algorithm of Fincke and Pohst [FP] to compute

all lattice points in a sphère of a certain radius around the origin. We have for the fourth p-adic
reduction step:

The * column gives the number of lattice points found in the sphere of radius the given bound for u.
The ** column gives the number of those points that satisfy the given bounds for ni and A, as well as
the condition ni + li  m for the i such that pi = p. The *** column gives the number of these lattice
points that correspond to solutions of ordpi(039B’i) = ni + h for only the prime pi = p. The 12 such
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solutions that were found were checked for ordpi(A;) = ni + li for the other three primes, and all
failed. Thus the conclusion is:

hence, N4 = 37.
At the fourth real reduction step we took C = 1010 and W1 = 19, W2 = 34, W3 = 44, W4 = 59.

Then R = 791 and S = 624477. We took D = 1500, which satisfies D &#x3E; R2 + S = 1118.1.... We
found:

Here the * column gives the number of lattice points in the sphere of radius D + the given bound for
1-4t - y’|, and the ** column gives the number of those points inside the block given by the bounds for
ni found in the fourth p-adic reduction step, and the bound 352 for A found in the third real
reduction step. These 18 candidate solutions did not pass the ordpi(039B’i) = ni + li test for the four

primes. Now we have either H  c18 + c17N4 = 915.977 , or we apply Proposition 16, which
yields H  . The optimal Ci6 is 0.119097, that leads to the conclusion H  164. 

C16
We performed three more reduction steps using the Fincke and Pohst method. We give the

following data:
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Here the *-column gives the number of candidate-solutions that passed the test for

ordpi(039B’i) = ni + 1; for the four primes. For these 45 candidate-solutions we computed (to a precision
of about 15 decimal digits) as a subsequent test the real logarithms of the absolute values of the three
conjugates of fi = 03B103C0n12103C0n23103C0n3503B5a1103B5a12, and checked for

which is equivalent to (12). Only six candidates survived this, and appeared to correspond to
solutions of (1) indeed. They are (of the pair + (x, y) we give only the one with positive x)

As in the fourth reduction step we conclude after the real reduction steps that we have for all but the
above six exceptional solutions:

The conclusion is that for all but the six exceptional solutions we have

Note that only the first three exceptional solutions do not satisfy these bounds. Carrying out further
reduction in the same way caused the number of lattice points found by the Fincke and Pohst
method to increase so dramatically that it tumed out to be more efficient to apply the sieve method
of the next section to find all the solutions below the bounds just obtained.

18. The final sieve

Now we are left with the ’very small’ upper bounds N1,..., Nv for n1,..., My

respectively, and Ao for A = max|ai|. Thus we have (Nl + 1)....
- (N, + 1) · (2A o + 1 y possible tuples (n1,..., n," ai, ... , ar) to check for relation
(11), i.e. whether, if we express the right-hand side of (11) as a Z-linear
combination of an integral basis 1, 8, ... of the order (9, all but the coefficients of
1 and 0 turn out to be zero. Such a task might be difficult to accomplish by direct
checking of every possible tuple. Therefore we propose the following, com-
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putationally easier method, which constitutes a sieve of the set, in general very
large, of possible (very small) tuples.

Let q be a rational prime, whose prime ideal factorization in K has at least
three distinct first degree ideals, denoted by qi (i = 1, 2, 3). Then

for some explicitly known mi~Z for i = 1, 2, 3. Hence for i = 1, 2, 3 rational

integers Ai, Pi1,..., Pw, Eil, ... , Eir can be easily computed such that (cf. (11))

It follows by (11) that

and now both sides of the last congruence are rational integers, therefore each of
the three congruences above holds modulo q as a congruence in Z as well. From
these three congruences we can eliminate x and y, j ust as we did in deriving (12)
from (11), to find a congruence of the form

For several primes q, q’, q",... as above we can find analogous congruences. We
start with checking all possible tuples (nl,..., nv, al, ... , ar) for congruence (38)
modulo q. Each tuple that survives this test is then checked for (38) modulo q’,
and so on. If a tuple does satisfy all the congruences (38) modulo q, q’, q",...,
then, and only then, this tuple is tested further, e.g. directly for (11), or by
checking (12) seen as an equality in Il with a certain precision (15 decimal digits
usually will suffice). One expects that this last check has to be done for only a
very few tuples that are not factual solutions of (11). In practice this is already
the case when only a few primes q, q’, q",... are selected. Heuristically, one
expects that only one out of every q random tuples satisfies (38) modulo q. Thus
it is efficient to start the sieving with the largest prime selected.

18Ex We have as bounds: N1 = 19, N2 = 11, N3 = 8, N4 = 6, Ao = 86. The number of tuples to be
checked in each of the three cases is thus 20·12·9·7·1732 ~ 4.5 x 108. We chose four primes:
q = 401, 167, 89, 47, that all split completely in K (note that 401.167.89. 47 ~ 2.8 x 108 is of the size
of the number of tuples). Using the data as given in the Table below we performed the sieve for these
four primes.
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The results were as follows:

The 82 tuples that were left were tested for (12) in 15 digit real precision. Three tuples did not satisfy
this test, namely (nl, n2, n3, n4, ai, a2, Case) = (9, 5, 5, 5, 48, 13, III), (10, 3,1, 2, 18, -3, III), (10, 3,1, 2,
18, - 3, V). The other 79 tuples come from solutions indeed. Among them there are 10 solutions
counted twice, namely in Cases III and V with n3 = 1. Thus there are 69 solutions satisfying the
bounds given above, in addition to the 3 solutions not satisfying these bounds, that were found in the
previous Section.
We do not give detailed information on the computation time, since we used different computers,

which makes comparison difficult. Moreover, the computation times might say more about the
complexity of our implementation of the algorithms than about the complexity of the algorithms
themselves. Roughly speaking we used about 15% of the total time for the first reduction step
(bringing the bound down from 9.844 x 1049 to 4918), about 5% on the second to fifth steps (from
4918 down to 113), about 45% on the sixth and seventh reduction step (from 113 down to 86, this
large percentage being due to the very many lattice points detected by the Fincke and Pohst
algorithm that had to be checked further), and about 30% for the final sieve. We estimate that the
total computation time on a VAX 3100 workstation (the fastest computer we have used) would be
about 100 hours.

We also performed an eighth and ninth reduction step using the Fincke and Pohst method,
leading to a reduction of the bound from 86 down to 59 only, at the cost of 150 hours on the
VAX 3100. It is thus clear that the sieve did this job much faster. This experience shows that the
different reduction methods are in practice complementary. It also shows that the amount of work
needed (by computer and programmer) for reducing the bound from, say, 1000 to 0, will in general be
much larger than the time needed for the reduction from, say, 105° to 1000.

Finally we give the complete list of solutions of



278

with (x, y) = 1 and x  0. Note that the solutions of the Thue-Mahler equation

can be easily found from this Table, since ,
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Appendix Al. The absolute logarithmic height of an algebraic number

Let a be an algebraic number, aotD + ... + aD its minimal polynomial over Z,
and ex(l),..., oc (D) the real or complex roots of this polynomial. The absolute
logarithmic height of a is

Note that even when we view a as a complex number (so that a coincides with
some 03B1(i)) rather than as an abstract algebraic number, h(a) is independent of the
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specific numerical value of the conjugate of a that we are considering. For
references and more information on the absolute logarithmic height we refer to
[Wa, Section 2].

A1Ex Below 03B41 is as defined in Section 7 (see also the Table in Section 6E"), where for (i0,j, k) we
have chosen some permutation of (1, 2, 3). Referring to the notation of Appendix Al, we have
computed the following Table.

Appendix A2. A lower bound for linear forms in logarithms of algebraic
numbers in the p-adic case

In this Appendix we refer to [Yu2, Section 0.2]. We have made several slight
modifications to the notation in order to conform to (or to avoid confusion with)
the notation of the present paper.

Let 03B11,...,03B1m (m  2) be nonzero algebraic numbers, and put
K 1 = Q(03B11,...,03B1m), n1 = [K 1: Q]. Let p be a prime number. Set

Let K2 be an extension of K 1 such that

and n2 = [K2 : Q]. Let p2 be a prime ideal of K2 over p with f2 as residual degree.
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For any algebraic number a of degree D and conjugates 03B1(1),..., a(D) in C we
define

where Log denotes the principal complex algorithm. Now for every j = 1,..., m
let

and

Finally put

The following theorem is a slightly weakened version of [Yu2, Theorem 1].

THEOREM (Yu). If ordp2(03B1j) = 0 for j = 1,..., m and Â :0 0, then

where

A2E" We refer to the notation of Appendix A2. In our case , 
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We put p = ppi if p = 2, 3, 7, and p = ps if p = 5 (see the Table in Section 6Ex). In Section 3E" we have
seen that

Let pi, p2 be prime ideals over p of Ki and K2 respectively. Put

for j = 1, 2 (note that f2 agrees with the notation of Appendix A2). Since "2 is over p we obviously
have ordp(03BB)  ordp (03BB), therefore

By the relation between residual degrees of ideals in relative extensions (see [Na2, Proposition 4.3]
or [Nal, p. 136]) we have

since [K1 : K] = 2. By Yu’s lemma (see [Yu2, Appendix]), for p = 2, 3, 7 we have f2 = max{f1, 2},
while for p = 5 we have f2 = fi. Hence, by (40),

Now we can apply the Theorem of Appendix A2, making use of (41), in order to find an upper bound
for ordp(03BB), which, in view of (39), will give an upper bound for ordp(03BB). In our case, of course Â is
given by the leftmost expression in (12), and B = H. Straightforward computations show that
Y = h(03B1j) for j = 1,..., 7. The upper bound for ordp(03BB) is of the form

It is easy to see that the worst (=largest) upper bound given by the Theorem is obtained in Case V.
Then V1·····V7  33534.769, and V = V7  8.378281. The following Table is useful for the

computation of c10(p):
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A straightforward computation shows that

(rounded up).

Appendix A3. A lower bound for linear forms in logarithms of algebraic
numbers in the reailcomplex case

In this section we state a recent result by Blass, Glass, Manski, Meronk and
Steiner [BGMMS, Corollary 2], which considerably improves the lower bound
for linear forms in logarithms of algebraic numbers given in a well known earlier
paper of Waldschmidt [Wa]. Below we give a slightly modified (weakened)
version of this result, though we believe it to be more useful for our application.

Let a 1, ... , am (m  2) be algebraic numbers, which we view as complex
numbers, belonging to a field of absolute degree D  2. For every j = 1,..., m
we fix a determination of the logarithm of 03B1j, which we denote by log aj. For
j = 1,...,m we define

where we have supposed, without loss of generality, that the numbering of the

rx/s is such that

Further we define for j = 1,..., m

We also consider positive numbers a, à, E, E and AÏ such that

Finally,
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THEOREM (Blass, Glass, Manski, Meronk and Steiner). If 039B ~ 0 and

then

where

and

A3Ex The algebraic numbers ai, ... , 03B17 are those which appear in Appendix A2Ex, but now the
ordering of these numbers is not immaterial, in view of the condition V1  ···  V7. Note that here A
is the linear form Ao appearing in Section 10. As stressed there we must consider three cases,

depending on the value of io. Corresponding to those cases we have chosen (see Section 10Ex)
(j, k) = (2, 3), (3, 1), (1, 2). In the notation of the Theorem of Appendix A3, B = H, and D = 6. In the
case of our specific example, the Theorem is applied with H = A (see Section 10, after (21)). For the
computation of the numerical values of c7 and c8 it has been necessary to construct the following
Tables:
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Summing up we have in all cases:

It is impressive that, on applying Waldschmidt’s theorem on which the present theorem is based (cf.
[Wa]), we find C7 7 x 1054, c8 ~ 5, unconditionally on H. As is seen in Section l0E", the restriction
H &#x3E; 3.939 x 1032 is not essential.
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